Spectral Filtering as a Method of Visualising and Removing Striped Artefacts in Digital Elevation Data
نویسندگان
چکیده
Spectral filtering was compared with traditional mean spatial filters to assess their ability to identify and remove striped artefacts in digital elevation data. The techniques were applied to two datasets: a 100 m contour derived digital elevation model (DEM) of southern Norway and a 2 m LiDAR DSM of the Lake District, UK. Both datasets contained diagonal data artefacts that were found to propagate into subsequent terrain analysis. Spectral filtering used fast Fourier transformation (FFT) frequency data to identify these data artefacts in both datasets. These were removed from the data by applying a cut filter, prior to the inverse transform. Spectral filtering showed considerable advantages over mean spatial filters, when both the absolute and spatial distribution of elevation changes made were examined. Elevation changes from the spectral filtering were restricted to frequencies removed by the cut filter, were small in magnitude and consequently avoided any global smoothing. Spectral filtering was found to avoid the smoothing of kernel based data editing, and provided a more informative measure of data artefacts present in the FFT frequency domain. Artefacts were found to be heterogeneous through the surfaces, a result of their strong correlations with spatially autocorrelated variables: landcover and landsurface geometry. Spectral filtering performed better on the 100 m DEM, where signal and artefact were clearly distinguishable in the frequency data. Spectrally filtered digital elevation datasets were found to provide a superior and more precise representation of the landsurface and be a more appropriate dataset for any subsequent geomorphological applications.
منابع مشابه
Filtering as a Method of Visualising and Removing Striped Artefacts in Digital Elevation Data
Spectral filtering was compared with traditional mean spatial filters to assess their ability to identify and remove striped artefacts in digital elevation data. The techniques were applied to two datasets: a 100 m contour derived digital elevation model (DEM) of southern Norway and a 2 m LiDAR DSM of the Lake District, UK. Both datasets contained diagonal data artefacts that were found to prop...
متن کاملAn Enhanced Median Filter for Removing Noise from MR Images
In this paper, a novel decision based median (DBM) filter for enhancing MR images has been proposed. The method is based on eliminating impulse noise from MR images. A median-based method to remove impulse noise from digital MR images has been developed. Each pixel is leveled from black to white like gray-level. The method is adjusted in order to decide whether the median operation can be appli...
متن کاملComprehensive Analysis of Dense Point Cloud Filtering Algorithm for Eliminating Non-Ground Features
Point cloud and LiDAR Filtering is removing non-ground features from digital surface model (DSM) and reaching the bare earth and DTM extraction. Various methods have been proposed by different researchers to distinguish between ground and non- ground in points cloud and LiDAR data. Most fully automated methods have a common disadvantage, and they are only effective for a particular type of surf...
متن کاملFeature learning from incomplete EEG with denoising autoencoder
An alternative pathway for the human brain to communicate with the outside world is by means of a brain computer interface (BCI). A BCI can decode electroencephalogram (EEG) signals of brain activities, and then send a command or an intent to an external interactive device, such as a wheelchair. The effectiveness of the BCI depends on the performance in decoding the EEG. Usually, the EEG is con...
متن کامل3D Detection of Power-Transmission Lines in Point Clouds Using Random Forest Method
Inspection of power transmission lines using classic experts based methods suffers from disadvantages such as highel level of time and money consumption. Advent of UAVs and their application in aerial data gathering help to decrease the time and cost promenantly. The purpose of this research is to present an efficient automated method for inspection of power transmission lines based on point c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015